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A new method for the q-analogue of a hydrogen atom is presented. By using 
the method, we construct a model of a two-dimensional q-hydrogen atom, and 
determine its energy, angular momentum, and state vectors. The method may be 
extended to cases of arbitrary dimension. 

1. I N T R O D U C T I O N  

In recent years, several authors (e.g., Kibler and Negadi, 1991; Gora, 
1992; Song and Liao, 1992) have studied the q-analogue of  a hydrogen atom. 
They gave the energy spectrum and the q-hydrogen atom, but did not discuss 
its angular momentum and its state vector. 

A method used in previous work (Kibler and Negadi, 1991; Gora, 1992) 
for constructing a q-hydrogen atom is to use results on the q-harmonic 
oscillator and make the q-analogue for a relation between a hydrogen atom 
and a four-dimensional harmonic oscillator. The derivation and meaning of 
this relation are as follows: The use of  the so-called KS transformation 
transforms the energy eigenequation of the hydrogen atom 

into the energy eigenequation of  the four-dimensional harmonic oscillator 

--~-~ A - 4Eu  2 t~ = 4ZeZt~ (2) 
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accompanied by a constraint condition (Kibler and Negadi, 1984), where 
xi (i = 1, 2, 3) and u,~ (a = 1, 2, 3, 4) are the coordinates of the hydrogen 
atom and the four-dimensional harmonic oscillator respectively; x = (xixi) ~/2, 
u z = u~u~. In this transformation, the same function t~ is used to represent 
simultaneously the energy eigenfunctions of  the two quantum systems, and 
the energies of the two quantum systems do not correspond one to one. In 
making the q-analogue for the transformation between the two quantum 
systems, the hydrogen atom and the four-dimensional harmonic oscillator, 
one may give the energy of the q-hydrogen atom, but cannot determine its 
state vectors. 

In this paper, we will present a new method for the q-analogue of  a 
hydrogen atom and construct a model of the q-hydrogen atom of dimension 
two. We use also a relation between a hydrogen atom and a harmonic oscilla- 
tor, but this relation is not the same as the one mentioned above. 

Zeng et al. (1994a,b) used the SU(1,1) algebra to give the simplest and 
most general algebraic relationship between a d-dimensional hydrogen atom 
and a D-dimensional harmonic oscillator, in which the energies of  the two 
quantum systems correspond one to one. Making a q-analogue for this rela- 
tionship is an excellent way to construct a q-hydrogen atom. This paper is 
based on Zeng et al. (1994a, b), but we restrict ourselves to the case of  
dimension 2. We work out not only the energies of the two-dimensional (2D) 
q-hydrogen atom, but also its angular momentum and state vectors. 

Remainder of this paper is organized as follows. In Section 2, the SU(1,1) 
algebra is used to establish a connection between a 2D hydrogen atom and 
a 2D harmonic oscillator, in which energies, angular momenta, and state 
vectors of the two quantum systems correspond one to one. In Section 3, we 
give a q-analogue for the 2D harmonic oscillator in which the Hamiltonian 
and angular momentum operator of the 2D q-harmonic oscillator are defined 
and the eigenvalues and common eigenstates of  these operators are deter- 
mined. Then we make a q-analogue for the relation between the 2D hydrogen 
atom and the 2D harmonic oscillator given in Section 2, and construct a 
model of a 2D q-hydrogen atom. 

2. R E L A T I O N S H I P  B E T W E E N  T H E  2D H Y D R O G E N  ATOM 
AND 2D H A R M O N I C  O S C I L L A T O R  

We denote the Hamiltonian and the angular momentum operator of the 
2D hydrogen atom by h and 13, respectively, and their common eigenstates 
by In, m); thus one has 

hln ,  m) = e~ln, m), 13In, m) = mln ,  m) (3) 

where e, = - 1/[2(n + 1/2) 2] (in units ~e41h z) are energy eigenvalues of the 
2D hydrogen atom, n = 0, 1, 2 . . . .  ; m = 0, _1 ,  ___2 . . . . .  ___n. 
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We denote the Hamiltonian and the angular momentum operator of the 
2D harmonic oscillator by H and L3, respectively, and their common eigen- 
states by IN,/14)'; thus, one has 

HIN,  M) '  = E~IN,  M)' ,  L31N, 114)' = MIN ,  M) '  (4) 

where EN = N + 1 (in units hto) are the energy eigenvalues of the 2D 
harmonic oscillator, N = 0, 1, 2 . . . .  ; IMI = N, N -  2 . . . . .  1 or 0 depending 
on odd N or even N, respectively. 

We now apply the method presented in Zeng (1994a,b) to establish a 
relation between the 2D hydrogen atom and the 2D harmonic oscillator. 

Using the coordinates of the 2D hydrogen atom and 2D harmonic oscilla- 
tor xi (i = 1, 2) and u,~ (o~ = 1, 2) (in the following, these are assumed to 
be dimensionless), we construct the operators 

K~ = ~ (xZ~x + x), K2 = ~ ~ + x,. K3 = - ~  (xa~ - x) (5) 

and 

1 Kl = ~ ( u  2+  A.), 1 
K2 = ~ 1 + u~, K3 = -~ (u z - Au) (6) 

respectively, where x = (xixi) v2, Ax = 02/OxiOxi and u = (u~,u,) u2, A ,  = 02/ 
Ou~,Ou~. It is easy to prove that the two sets of operators satisfy all the 
commutation relations of the SU(1,1) algebra, i.e., [K1, K2] = - iK3,  [K2,/(3] 
= iKl, and [K3, Kl] = iK2. Thus the SU(1,1) algebra establishes a connection 
between the 2D hydrogen atom and 2D harmonic oscillator. By using this 
connection, all the problems with the transformation between the two quantum 
systems may be solved. 

Because the operators expressed in (5) and (6) are all elements of the 
SU(1, 1) algebra, we can establish the operator equations 

1 0 1 a X A x - X =  _ l ( u  2 _  Au ) 
XAx + X -~- ~ (U 2 + Au), Xi ox-~i ~- ~ u~x Ouet , 

(7) 

The first and third of these equations may be combined to give 

1 1 x = ~ u  2, xax=~au (8) 

The coordinate transformation between the 2D hydrogen atom and the 
2D harmonic oscillator may be determined by using the above operator 
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equations. Its form is not naturally unique. The transformation we give is 
as follows: 

1 (u~ - u2~), x2 = uiu2 (9) X I = ~  

In using the pole coordinates, we set xl = x cos ot and x2 = x sin a for 
the 2D hydrogen atom, and un = u cos 0 and u2 = u sin 0 for the 2D harmonic 
oscillator. Substituting these relations into (9), we find the relation between 
cx and 0 

o~ = 20 (10) 

The angular momentum operators of the 2D hydrogen atom and the 2D 
harmonic oscillator are 13 = - i  O/Oot and L 3 = - i  a/a0, respectively. 
According to (10), one easily shows that there is a relation between L 3 and 13 

L3 = 213 (11) 

It is clear that an eigenstate of 13 (or L3) must be an eigenstate of  L3 (or 
/3); moreover, there is a relation between the corresponding eigenvalues 

M = 2m (12) 

where m and M are the eigenvalues of  13 and L3, respectively. Equation (12) 
shows that the angular momentum of the 2D harmonic oscillator connected 
to the 2D hydrogen atom is always even. 

Now we study the relation between the energies of the two quantum 
systems. The Hamiltonian of the 2D hydrogen atom is h = -�89 - l lx .  
Using (5), this expression may be reduced to 

1 
(K1 + K3)h = - 2  (Kl  -- g3) - 1 (13) 

Acting with the operator equation (13) on the state vector In, m) and using 
(3), we obtain 

{ - [ � 8 9  e,,]Kl + [ � 8 9  en]K3 - 1}In, m) = 0 (14) 

Defining the function 0, by 

1 - 2en 1 + 2en 
cosh 0n ~ , sinh 0n ~ (15) 

and using the relation satisfied by the elements of the S U ( I ,  1) algebra 

e-iXz~ ix2~ = K3 cosh 0n + K1 sinh 0n (16) 
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then we can rewrite equation (14) as 

{K 3 1,---~'~eiK2~ m) = 0 (17) 
~ / - 2 e J  

After the coordinate transformation is made, the operator K3 in (17) may be 
replaced by the one expressed in (6). Noting that K3 = 1 ~-H, where H is the 
Hamiltonian of the 2D harmonic oscillator, we conclude that (17) may be 
considered as the energy eigenequation of the 2D harmonic oscillator; in 
other words, one may establish the map 

2 
IN, M) '  = eiK2~ m), EN = ~ (18) 

or  

2 
In, m) = e-i~:z~ M)' ,  e,~ = (EN) 2 (19) 

Equations (18) and (19) are just the relations between the energies and state 
vectors of the two quantum systems. 

It is well known that e, = -1/[2(n + �89 n = 0, 1, 2 . . . .  ; EN = N 
+ 1, N = 0, 1, 2 . . . . .  Substituting these into (19), one gets 

N = 2n (20) 

which means that the energy level of the 2D harmonic oscillator connected 
to the 2D hydrogen atom is always even. 

It is easy to show that the operator K2 commutes with the operators/3 
and L3, i.e., one has 

[K2,/3] = [Kz, L3] = 0 (21) 

From this fact, when IN, M)' on the right side of (19) is an eigenstate of L3, 
then In, m) on the left side of (19) must be an eigenstate of  13. 

In the following, we use particle number representation to express the 
state vectors of the 2D harmonic oscillator. Introducing the creation and 
annihilation operators a~ and a~ by 

a ~ = ~  U s -  a , ~ = ~  us + (22) 

which satisfy 

[as, a~] = ~s~, [as, a~] = 0, [a~, a~] = 0 (23) 
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then we can write the Hamiltonian and the angular momentum operator of 
the 2D harmonic oscillator as 

and 

1 
H = "~ ~ (a~a,~ + a~,at~) (24) 

eL= 1,2 

L 3 = - i ( - a l a ~  + a~a2) (25) 

respectively. One may use a representation in which both a~a~ and a~a2 are 
diagonalized; in this case, H is diagonalized also, but L 3 is not diagonalized. 

In order to diagonalize simultaneously H and L3, we introduce the 
operators a§ and a_ by setting 

1 i 
al = ~ (a§ + a_), a2 = ~ ( a + -  a_) (26) 

The commutation relations satisfied by a .  and at+_ are the same as (23), 
provided one replaces the indexes 1 and 2 by + and - ,  respectively. Using 
the transformation (26) reduces H and L 3 to 

H = -~(a+a+l t + a+at+ + aLa_ + a_aL) (27) 

and 

L 3 = at+a+ - aLa_ (28) 

respectively. Let I m+)" and I m_)" denote the eigenstates of at+a+ and at_a_ 
with the eigenvalues m§ and m_, respectively; then in the representation 
constructed by I m+, m_)" = I m+)"lm_)", both H and L 3 are diagonalized, 
and one has 

Him+, m_)" = (m+ + m_ + 1)lm+, m_)" (29) 

L31 m+, m_)" = (m+ - m_) I m+, m_)" (30) 

It is clear that one may express IN, M)' in terms of Im+, m_)", i.e., set 
IN,/14)' = Im§ m_)" accompanied by N = m+ + m_, M = m+ - m_. In 
this case, the formula (19) can be reduced to 

In, m) = e-iX2~ m_)" (31) 

where the operator K2 takes the form 

i 
K2 = --~ (at+aL - a+a_) (32) 

In (6), replacing u~ and Olau~, by a~ and a~ and then making the transformation 
(26), one obtains (32). 
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3. 2D q - H Y D R O G E N  ATOM 

Because we will construct a 2D q-hydrogen atom by means of  a 2D q- 
harmonic oscillator, we now describe some results on the 2D q-harmonic 
oscillator. The creation and annihilation operators of the 2D q-harmonic 
oscillator aq*~ and aq,~ (in the following, ot = +, - )  may be defined as 
(Macfarlane, 1989; Biedenharn, 1989; Katriel and Solomon, 1991) 

aJ Mo + = + 
a~q'~= 1 . ~ +  1 J  ' aq,~ L M ~ +  1 ~ a,~ (33) 

where M,~ are the number operators, and [x] = (q~ - q-X)/(q _ q-l). These 
operators satisfy the relations 

a*qaaqa = [Ma], aqofl*q~ = [M,~ + 1], aq,~a*q~, _ qaqaaq a t  = q-M,~ (34) 

[aqa, aqf3] = [atqa, aqtl 3] = [Ma, MI3] --- 0 (35) 

The Hamiltonian and the angular momentum operator of  the 2D q-harmonic 
oscillator may be defined as 

1 1 E (atqaaq ,~ + aqaatq o,) = ~ E ([M,~] + [M~, + 1]) (36) nq = 2 a = + -  
, I I ~ + - -  

and 

L3q = atq+aq+ -- a~q_aq_ = [M+] - [M_] (37) 

respectively. Equations (33)-(37) are just a q-generalization of  the operators 
of the 2D harmonic oscillator. 

The basis vectors spanning the representation of the deformed algebra 
(33)-(35) may be denoted by I m+, m_)q. This is the eigenvector of the 
operator Ms with the eigenvalue m~: 

I I  ~ I t  Mo, lm+, m-)q m,:, I m+, m-)q (38) 

and satisfies 
I I  ~ tt aqalm+, m_)q [m~]UZlm+ -- ~,+, m-  - ~ a - > q  (39) 

a*q,~lm+, m_)q = [m,~ + 1]l'Zlm+ + ~,+, m_ + ~,~_}q (40) 

Obviously, the basis vector I m+, m_}~ is also the common eigenvector 
of Hq and L3q, and the corresponding eigenequations may be written as 

Hqlm+, m_)q = Eqlvlm+, m_}q (41) 

and 

L3qlm+, m_)q = Mqtm+, m_)~ (42) 
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respectively, where EqN and Mq are the eigenvalues of Hq and L 3q , respec- 
tively, and 

E q N = I  ~ ( [mj  + [m~+ 1]) (43) 
~ = + , _ _  

Mq = [m+] - [m_] (44) 

Now let us describe our method for the q-analogue of a hydrogen atom. 
We have given the relationships between the energy, angular momentum, 
and state vector of the 2D hydrogen atom and those of the 2D harmonic 
oscillator. In these relationships, by replacing the universal harmonic oscillator 
with the q-harmonic oscillator, we obtain the energy, angular momentum, 
and state vector of the 2D q-hydrogen atom. That is, replacing the energy 
and angular momentum of the universal harmonic oscillator with those of 
the q-harmonic oscillator, the relations (19) and (12) give the energy and 
angular momentum of the 2D q-hydrogen atom, respectively, and replacing 
the operators a~, at  and the state vector I m§ m_)" of the universal harmonic 
oscillator with the operators aqa, atq,~ and the state vector I m+, m_>q of the q- 
harmonic oscillator, the relation (19) gives the state vector of the 2D q- 
hydrogen atom. Hence, the energy and angular momentum of the 2D q- 
hydrogen atom are obtained as 

2 8 
- - 2 ( 4 5 )  

eqn (EqN)2 {=~+ ( [ m , ~ ] + [ m , ~ + l ] ) } , ~  ,- 

and { noting that the angular momentum operator of the 2D q-hydrogen atom 
is 13q = � 8 9  - [ M - l ) }  

1 mq = ~gq  ---- �89 - [m_]) (46) 

respectively, and the corresponding state vector is obtained as 

In, m>q ~- e -iK2qOqnlm+, m_>q (47) 

where the operator K2q is 

i t t K2q = - ~  (aq+aq_ - aq+aq_) (48) 

and the function 0qn is defined by 

1 - 2eqn " 1 + 2eqn 
cosh 0q. = _f-L-~q ' sinh 0qn = ,f-L-~q. (49) 

Here n and m may also be called the main quantum number and angular 
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quantum number, respectively. Their connections with the quantum numbers 
m+ and m_ are 

n = �89 + m_) (50) 

m = �89 - m_) (51) 

For the different partitions (m+, m_) of  N, the values of EqN are not 
generally the same. Therefore, after the q-analogue of  the hydrogen atom is 
made, its energy levels would be generally split. 

Now let us observe in a concrete case the energy, angular momentum, 
and state vectors of the 2D q-hydrogen atom in its ground state and first 
excited state. For the ground state, n = 0, so N = 0, (m+, m_) --- (0, 0); its 
energy is 

eqo = - 2  (52) 

which is the same as the energy of the ground state of the usual 2D hydrogen 
atom; its angular momentum is mq = 0, and the corresponding state vector is 

[0, O)q = e-iK2qOqOI O, O)q 

where 0q0 is a function determined by 

1 - 2%0 sinh 0q0 = cosh 0q0 - _x/-Z~qO, 

(53) 

1 + 2eqo 
~ q 0  (54) 

For the first excited state, n = 1, so N = 2 and (m+, rn_) = (2, 0), (1, 
1), and (0, 2). There are two energies corresponding to n = 1. One is 

2 
eql(1) = (1 + [2]) 2 (55) 

and the corresponding state vector is 

I1, O)q = e-iK2q~ 1, 1)q (56) 

where 0ql(1) is a function defined by 

1 - 2eqi(1) 1 + 2eql(1) 
cosh 0ql(l ) -- ~ q l ( l )  , sinh 0ql(l ) = ~ q l ( l )  (57) 

In the state I1, 0)q, the angular momentum is mq = 0. The other energy is 

8 
eql(2) = (1 + [2] + [3]) 2 (58) 

and the corresponding state vectors are 

I 1, 1)q = e-iK2q~ 12, O)q (59) 
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and 

I 1, - 1)q = e-iK2q~ lO, 2)q 

where 0ql(2) is a function determined by 

1 - 2eq~(2) 
cosh  0ql(2 ) = x/--~-~ql(2) , s inh  0ql(2) - 

(60) 

1 + 2eq1(2) 
~ q l ( 2 )  (61) 

The energy eql(2) is degenerate, since it corresponds to the two state vectors 
I 1, l)q and I 1, - 1)q. In these two state vectors, the angular momenta are mq 
= -~[2] and mq = -�89 respectively. 

The reader may write out the energies, angular momenta, and state 
vectors of the 2D q-hydrogen atom when n = 2. One can see from these 
observations that after the q-analogue of the hydrogen atom is made, the 
energy of its ground state is unchanged, while the energy levels of its excited 
states must be split; thus the degeneracy of these energy levels would be partly 
abolished. It certainly would be significant to study the physical meaning of 
the number q in this problem. 

When q --~ 1, the formulas (49)-(50) return to the classical case [see 
(12), (15), (19), (31), and (32)]. Therefore, this work is consistent. 

The method presented for constructing a q-hydrogen atom in this paper 
is of wide significance. It is very simple and may be extended to three-, and 
even arbitrary-dimensional cases. 
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